Comparison of The Compressive Strength and The Microstructure of Metakaolin Metastar and Metakaolin Bangka as Additive in Ordinary Portland Cement

Author:

Astutiningsih Sotya,Sura Widyaningsih,Zakiyuddin Ahmad

Abstract

Various This paper presents the results of the investigation on the use of Metakaolin (Al2Si2O2) as a supplementary cementing materials to improve the strength of cement. The most effective way to increase the strength of cement is the substitution of a proportion of cement with supplementary cementing materials. One of them was Metakaolin. Metakaolin was produced by thermal treatment calcination from Kaolin at 600-800 Celcius and has highest alumina and silicate purity. By added Metakaolin to Portland Cement type I (OPC), the amount of Calcium Silicate Hydrate (CSH) will increase through binding with Calcium Hydroxide (CaOH). There were two kinds of Metakaolin used in this investigation, commercial metakaolin named Metakaolin Metastar compared with Metakaolin Bangka which derived from Indonesia local resources, Bangka Island. Four Metakaolin replacement levels were employed in this investigation: 5%, 0%, 15%, and 20% with water per cement ratio 0.35, 0.40, and 0.50 both of Metakaolin Metastar and Metakaolin Bangka. The cement pastes cured at room temperature for 7, 14, and 28 days. The mechanical strength examined by compressive strength test, the microstructure were examined by SEM-EDS. The results of the study revealed both Metakaolin Metastar and Metakaolin Bangka enhanced the compressive strength of OPC. The most appropriate strength was obtained for a substitution of 20% metakaolin metastar which had 46,15% higher than OPC and 5% metakaolin Bangka which had 39,06% higher than OPC. The hydration rate was examined by Thermal Analysis Monitor. The results indicated that metakaolin metastar released higher heat than metakaolin Bangka. It can be concluded that Metakaolin metastar was more effective than metakaolin Bangka as additive in OPC.

Publisher

EDP Sciences

Reference13 articles.

1. The Concrete Corundum. (2008). Construction, [online] pp.62–64. Available at: http://www.rsc.org/images/Construction_tcm18-114530.pdf

2. ASTM C618-17, Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete, ASTM International, West Conshohocken, PA, 2017, www.astm.org

3. El-Diadamony H., Amer A., Sokkary T., & El-Hoseny S. (2016). Hydration and characteristics of metakaolin pozzolanic cement pastes. HBRC Journal. http://dx.doi.org/10.1016/j.hbrcj.2015.05.005

4. Improving strength, drying shrinkage, and pore structure of concrete using metakaolin

5. Effect of Pozzolanic Additives on the Strength Development of High Performance Concrete

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3