Mechanical structural health prognosis with nonlinear mixed frequency ultrasonic signal analysis

Author:

Chen Hanxin,Liu Mingming,Hu Zhenyu,Li Menglong,Li Sen

Abstract

In order to detect the early fatigue crack of mechanical components simply, this paper puts forward the ultrasonic testing technology of different side collinear mixing. Firstly, based on the nonlinear ultrasonic theory, the method of calculating the difference frequency and sum frequency nonlinear coefficients of mixing ultrasonic is deduced. Then, the ram-5000 SINAP ultrasonic system is used to detect the aluminum alloy specimens with five different depth fatigue cracks, and the corresponding spectrum diagram is drawn. From the experimental results, we get that the crack depth is positively correlated with the nonlinear coefficients of difference frequency and sum frequency within a certain crack depth. Finally, by analyzing and fitting the experimental data, the prediction models of the difference frequency and sum frequency nonlinear coefficients on the crack depth are established. Through the analysis and combination of the above two prediction models, the prediction model of the mixing relative nonlinear coefficient is established, and the average error of the three prediction models is compared. The results show that the mixing relative nonlinear model has better results. The research work in this paper makes a useful exploration for crack detection and crack depth prediction.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3