Author:
Zhao Jin,Li Zhijun,Li Shilong,Shuai Shijin,Liu Shiyu,Cao Lijuan
Abstract
A LNT (lean NOx trap) model coupled with EGR (exhaust gas recirculation) was developed based on the Langmuir–Hinshelwood mechanism to investigate the EGR effects on NOx adsorption pathway of LNT catalysts with temperature changed in range 150℃~550℃. Both the nitrate and nitrite adsorption paths were considered for the NOx storage process in the model as well as the spillover of stored NOx between Ba and Pt sites. The data and validation for modelling were from literatures of predecessors and our previous lean-burn gasoline engine experiment*. The model quantified the contributions of both nitrate route and nitrite route to the NOx storage with change of EGR rate (0%~30%) under raw emission atmosphere from tested gasoline engine. The model captured key feature of different trends of nitrate route and nitrite route with increasing temperature (150℃~550℃) under EGR rate varying from 0% to 25%. The LNT model provided insight of reaction mechanism for interpreting the behaviour of NOx storage with change of GER rate and temperature, which contributed to improve the NOx storage capacity when mapping EGR rate for lean-burn engine and catalyst operation strategy optimization.