Performance-based-plastic design method of reinforced concrete structure for operational performance level

Author:

Sunaryati Jati,Nidiasari Nidiasari,Yuliandri Rifqi

Abstract

Under major load earthquakes, reinforced concrete structures designed according to the current codes will experience an inelastic deformation which is difficult to predict and control. Performance-based plastic design (PBPD) methodology is applied forward to design reinforced concrete structures in this study. In this method, as performance criteria, the target drift and yield mechanisms are preselected. Based on the work-energy balance principle, the design base shear is given as earthquake level and calculated as work required to push the structure as monotonically load to the target drift. The load equals the energy needed by an equivalent single degree of freedom in the same state. The plastic design is utilized to design the desired yield mechanism. The method was adopted on a 10-story reinforced concrete structure with an earthquake load in lateral forces based on SNI 1726:2019 and the Performance-Based Plastic Design (PBPD) method. Pushover analysis was carried out where the structure was pushed to obtain lateral load resistance followed by yielding gradually until plastic deformation occurred collapse From the pushover analysis, the ductility value for SNI 1726:2019 is less ductile than analytical using the Performance-Based Plastic Design (PBPD) method

Publisher

EDP Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3