The interaction between N, P in the overlying water of the reservoir Water-level fluctuation zone and submerged decomposition of Cynodon dactylon

Author:

Huang Jitao,Luo Ze,Jiang Yanxue

Abstract

During the process of inundation in the Water-level fluctuation zone(WLFZ), the N and P content in the overlying water will vary due to the release of soil nutrients, directly impacting the decomposition process of plants. However, current research on the effects of such water changes on plant decomposition is insufficient, hindering an accurate assessment of its impact on water environments. This study simulated changes in water quality during inundation and designed 8 types of water with different initial nutrient levels. Taking the typical WLFZ plant, Cynodon dactylon, as the subject, the decomposition and dynamic changes of N and P in these water bodies were studied. The results showed that inundation significantly increased the N and P content in the water, and the initial forms of N and P significantly affected the release of plant decomposition during inundation. Moreover, the release of PN and PP from the soil stimulated the activity of aquatic microorganisms, enhancing the self-purification capacity of the water body, and leading to a decrease in N and P content in the water body after 60 days of inundation. This study reveals the impact of N and P released from WLFZ soil on plant decomposition and the concentrations of N and P in the overlying water. providing critical insights into WLFZ ecosystem management.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3