On rheological, mechanical, thermal, wear and morphological properties of melamine formaldehyde reinforced recycled ABS for sustainable manufacturing

Author:

Singh Gulraj,Brar Gurinder Singh,Singh Rupinder

Abstract

This study outline the procedure of filament fabrication for fused deposition modelling (FDM), based upon rheological, mechanical, thermal, wear and morphological characterization as a case study of acrylonitrile butadiene styrene (ABS) - melamine formaldehyde (MF) composite. It has been ascertained that with increase in proportion of MF in ABS, viscosity is improved and melt flow index (MFI) is reduced significantly. As regards to the wear behavior is concerned it has been observed that ABS-MF (12.5 wt.%) composite has shown minimum weight loss and porosity. For the mechanical properties of the composite, experimental results show increased brittleness of the samples with addition of MF reinforcement. The thermal stability analysis was performed using differential scanning calorimetry (DSC) for virgin ABS and samples having 12.5% MF in ABS and results show the increased heat capacity of the material with increase in MF percentage. Further for sustainability analysis (based upon thermal stability), matrix of ABS-MF12.5% was subjected to three repeated thermal (heating-cooling) cycles and it has been ascertained that no significant loss was noticed in heat capacity of recycled composite matrix. The results are also supported by Fourier transform infrared spectroscopy (FTIR) analysis. Overall the results of the rheological, mechanical, wear, morphological and thermal properties suggested that 12.5% proportion of MF can be reinforced into selected grade of ABS thermoplastic for 3D printing as a sustainable solution.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3