Author:
Krishnamraju M.,Kumar Abhishek,Mishra Sushil,Narasimhan K
Abstract
Austenitic stainless steel is one of the second generation advanced high strength steel which finds application in automobile, aerospace and cryogenic components. The component made of austenitic steel might operate in subzero temperature condition because of its excellent formability even at subzero temperature. In the present work several tensile tests were performed on austenitic stainless-steel sheet of thickness 1.2 mm at 0°C, -40°C, -80°C, -120°C and at different strain rates of 0.01/sec,0.001/sec,0.0001/sec. The resultant mechanical properties, like yield strength, tensile strength, elongation percent and strain hardening exponent, along with phase fractions and microstructural properties were analyzed to understand the reasons for change in mechanical properties, on comparing with room temperature properties. It was noticed that tensile strength is 635 Mpa, & strain hardening exponent is 0.38 at room temperature (25 °C) and tensile strength is 1236 Mpa, & strain hardening exponent is O.49 at -120°C. Similarly, XRD characterization revealed that strain induced martensite increased from zero percent at 25°C (room temperature) to 57 percent at-120°C Similarly EBSD characterization revealed that grain average misorientation which also increased from room temperature to-120°C.