Machining response of Ti64 alloy under Nanofluid Minimum Quantity Lubrication (NFMQL)

Author:

Sahoo Sarthak Prasad,Datta Saurav

Abstract

Rapid wear progression of cutting insert associated with attainment of excessive tool-tip temperature are indispensable causes which limit operational domain of cutting velocity during dry turning of Ti64 alloy. Again, to counteract demerits of flood cooling, jet of air-oil mist (MQL technology) is employed in which water-based coolants or vegetable oils are highly preferable. On the other hand, inclusion of nano-additives within base fluid, and supply the same through MQL system (NFMQL) is also a trendy area of research. Application potential of NFMQL is understood over conventional MQL in terms of better cooling, and lubrication effects due to improved thermo-physical, and tribological properties of the resultant cutting fluid. In this context, present study aims to assess performance of MQL jet containing biodegradable Jatropha oil (carried by pressurized air) when applied during longitudinal turning of Ti64 work alloy. In addition, advantages of 2D layered-structured graphene nanoplatelets (when dispersed into Jatropha oil), in purview of machining performance on difficult-to-cut Ti64 alloy under NFMQL, are studied in this work. Experimental data are compared on the basis of different lubrication conditions (dry, conventional MQL, and NFMQL). Morphology of tool wear is studied in detail. The work extends towards studying chip morphology and machined surface finish of the end product, as influenced by variation in lubrication conditions.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3