Ensemble data mining methods for assessing soil fertility

Author:

Ziyadullaev Davron,Muhamediyeva Dilnoz,Khujamkulova Khosiyat,Abdurakhimov Doniyor,Maksumkhanova Azizahon,Ziyodullaeva Gulchiroy

Abstract

The application of ensemble data mining methods in assessing soil fertility and the use of methods such as random forest, gradient boosting and bagging to determine the level of soil fertility are examined in the article. Ensemble methods combine multiple machine learning models to improve the accuracy and stability of estimates. These methods consider various factors, including soil chemistry, climatic conditions, and historical crop yield data. The study also examines the application of the decision tree algorithm and such methods as random forest and bagging to estimate soil fertility. Performance results of these methods are provided using precision, recall, and F1-measure metrics. The results obtained show the high performance of ensemble methods in the task of classifying soil fertility levels. They have important implications for agricultural farms and research organizations that are working to improve soil management and increase crop yields.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3