Stability of orthotropic plates

Author:

Surianinov Mykola,Lazarieva Dina,Kurhan Iryna

Abstract

The solution to the problem of the stability of a rectangular orthotropic plate is described by the numerical-analytical method of boundary elements. As is known, the basis of this method is the analytical construction of the fundamental system of solutions and Green’s functions for the differential equation (or their system) for the problem under consideration. To account for certain boundary conditions, or contact conditions between the individual elements of the system, a small system of linear algebraic equations is compiled, which is then solved numerically. It is shown that four combinations of the roots of the characteristic equation corresponding to the differential equation of the problem are possible, which leads to the need to determine sixty-four analytical expressions of fundamental functions. The matrix of fundamental functions, which is the basis of the transcendental stability equation, is very sparse, which significantly improves the stability of numerical operations and ensures high accuracy of the results. An analysis of the numerical results obtained by the author’s method shows very good convergence with the results of finite element analysis. For both variants of the boundary conditions, the discrepancy for the corresponding critical loads is almost the same, and increases slightly with increasing critical load. Moreover, this discrepancy does not exceed one percent. It is noted that under both variants of the boundary conditions, the critical loads calculated by the boundary element method are less than in the finite element calculations. The obtained transcendental stability equation allows to determine critical forces both by the static method and by the dynamic one. From this equation it is possible to obtain a spectrum of critical forces for a fixed number of half-waves in the direction of one of the coordinate axes. The proposed approach allows us to obtain a solution to the stability problem of an orthotropic plate under any homogeneous and inhomogeneous boundary conditions.

Publisher

EDP Sciences

Reference16 articles.

1. Vajnberg D.V., Vajnberg E.D., Plastiny, balki-stenki (Prochnost, ustojchivost i kolebaniya) (1959)

2. Volmir A.S., Ustojchivost deformiruemyh sistem (1967)

3. Timoshenko S.P., Ustojchivost uprugih sistem (1955)

4. Timoshenko S.P., Ustojchivost sterzhnej, plastin i obolochek (1971)

5. Timoshenko S.P., Gere J.M., Theory of Elastic Stability (1961)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Stability of Individual Phases in the Elastic Matrix of a Composite;Materials Science Forum;2023-10-19

2. Effect of critical speed in machining of the main shaft of cone crushers on accuracy of treated surfaces;IOP Conference Series: Materials Science and Engineering;2021-06-01

3. Our sustainable coronavirus future;E3S Web of Conferences;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3