Vibration processes resulting from uneven rotation of the hammer crusher drive pulleys

Author:

Kopeikin Artem,Palitsyn Andrey,Savinykh Petr

Abstract

Livestock farming, as one of the main sectors of the agro-industrial cluster, cannot do without good quality forage. For the best absorption of feed, all the nutrients that make up its composition should be given to the animals in a milled form. Hammer mills are among the most compact machines for milling. The grinding of grain forages is a rather energy-intensive process. One of the variants for solving the power intensiveness problem can be the application of a a hammer crusher with periodic fluctuations in the angular speed in the rotation of the the working body. That is accompanied by the appearance of additional external stimulating force - vibration on the elements of a hammer crusher. In the article the question of vibration occurrence at non-uniform rotation of a crusher working body drive pulleys is considered. And such parameters as vibration acceleration, vibration displacement, and vibration velocity in three different axes are considered. In order to optimise the vibration parameters, experiments were carried out on units of different designs with different centre of rotation offset (2 mm). At this uneven rotation speed of 1800 min-1, the vibration velocity on the X-axis increased by 546% and 200%, depending on the machine design. The vibration displacement on the same axis, even at 450 min−1, increased by 442%. Based on these results, we examined the prerequisites for the investigated hammer crusher drive design, which is expected to improve the separation and evacuation process of the crushed product from the crushing chamber, and have an overall positive impact on the crushing process.

Publisher

EDP Sciences

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3