Soil-atmosphere interaction: cracking of a compacted soil under the effect of a thermo-hydric stress

Author:

Rosin-Paumier Sandrine,Granados Jaime,Caicedo Bernardo

Abstract

Reusing excavated material in geotechnical engineering reduces the carbon impact of a project. Such materials are usually placed in a compacted state in order to achieve the mechanical and hydric characteristics required to guarantee the safety of the structures. A good geotechnical knowledge of the materials is therefore necessary as well as a good anticipation of their behaviour over time. Indeed, in some situations, as in the case of waste storage, a low hydraulic conductivity is required. The use of crushed rocks rich in clays (argillite), possibly improved by adding bentonite, could be interesting. However, this addition, beneficial in terms of hydraulic conductivity, could be damaging from a mechanical point of view by the development of cracks at the interface atmosphere-compacted soil. For this purpose, samples compacted at the normal Proctor optimum are exposed to a relative humidity of 46% and a temperature of 22.5°C. The thickness, mass and surface condition (cracking) were monitored during the drying process, and measurements were taken in the thickness of the specimen after 29 hours of exposure. The results make it possible to compare the two materials at the same compaction energy. The argillite sample shows a significant shrinkage but no cracks at this scale. On the different hand, with the addition of bentonite, a significant cracking was observed and analysed. These results provide information on the hydromechanical behaviour of unsaturated fine soils at the atmosphere-compacted soil interface.

Publisher

EDP Sciences

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3