Interpretation of constant suction direct shear test

Author:

Bulolo Sam,Leong Eng-Choon

Abstract

Constant suction direct shear test enables the understanding of the failure mechanism in rainfallinduced landslides. It can be conducted using a conventional direct shear apparatus with some modifications. The constant suction direct shear test is carried out in two stages. In the first stage, the unsaturated soil specimen is consolidated to the target net normal stress and matric suction then sheared in the second stage. Matric suction is usually controlled using the axis-translation principle. It is commonly observed that the shear stress of an unsaturated soil sheared in the direct shear shows a strain-hardening behaviour at large displacements making the determination of the failure stress difficult. Hence, the objective of this study is to critically examine the constant suction direct shear tests and the analysis of the test results to obtain the shear strength parameters for unsaturated soils. Constant suction direct shear test data were collated from the literature. It was found that the interpretation of the direct shear test has two inconsistencies: (1) taking failure shear stress at arbitrary displacement strain or limit, dependent on the size of the direct shear apparatus, and (2) correcting only shear stress for contact area. The effect of these two consequences on the interpretation of the direct shear test range from negligible to significant. The study shows that arbitrary determination of failure shear stress can be resolved by plotting the direct shear test results using a stresspath plot. The effects of area correction are shown to be almost negligible for small horizontal displacements of less than 2 mm for both square and circular shear boxes. A more consistent interpretation of the constant suction direct shear test is demonstrated where both these inconsistencies are considered.

Publisher

EDP Sciences

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3