Discounted Markov Decision Processes with Constrained Costs: the decomposition approach

Author:

Semmouri Abdellatif,Jourhmane Mostafa,Elbaghazaoui Bahaa Eddine

Abstract

In this paper we consider a constrained optimization of discrete time Markov Decision Processes (MDPs) with finite state and action spaces, which accumulate both a reward and costs at each decision epoch. We will study the problem of finding a policy that maximizes the expected total discounted reward subject to the constraints that the expected total discounted costs are not greater than given values. Thus, we will investigate the decomposition method of the state space into the strongly communicating classes for computing an optimal or a nearly optimal stationary policy. The discounted criterion has many applications in several areas such that the Forest Management, the Management of Energy Consumption, the finance, the Communication System (Mobile Networks) and the artificial intelligence.

Publisher

EDP Sciences

Reference18 articles.

1. Hou Z., Filar J. A., & Chen A. (Eds.). (2013). Markov processes and controlled Markov chains. Springer Science & Business Media.

2. Markov Decision Processes with Sample Path Constraints: The Communicating Case

3. Multichain Markov Decision Processes with a Sample Path Constraint: A Decomposition Approach

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3