Fibrous silica bismuth sulfide: An advanced material towards promising photoelectrochemical water-splitting

Author:

Nik Lah Nik Muhammad Izzudin,Tuan Abdullah Tuan Amran,Sawal Muhammad Hakimi,Hazril Nur Izzati Hanani,Rashid Reem Abdullah,Mohd Azami Mohammad Saifulddin

Abstract

The emission of greenhouse gaseous to the atmosphere as a consequence of the utilization of fossil fuels has significantly contributed to global warming and sudden climax change which aroused a lot of concerns. This occurrence has indirectly spurred interest in hydrogen energy as a future alternative energy due to its environmentally friendly, high efficiency and long-term energy storage. Photoelectrochemical (PEC) water-splitting is a top-notch approach that can efficiently produce hydrogen. Moreover, semiconductor materials like bismuth sulfide have often been used as photoanode material in the PEC water-splitting study due to their narrow bandgap, high optical absorption coefficient, appropriate band alignment and low toxicity. Yet, Bi2S3 photoanode suffers from the rapid recombination of charge carriers which ultimately leads to sluggish water oxidation kinetics and poor charge transfer. Interestingly, the fabrication of fibrous silica bismuth sulfide (FSBS) not only demonstrated a low bandgap energy level but also effectively separated the photoproduced charges. In addition, the FSBS photoanode also showed a photocurrent density of 47.9 mA/cm2 at 1.23 VRHE which is 1.78 times greater than the commercial BS photoanode (26.9 mA/cm2). These findings indirectly exposed the potential of FSBS photoanode towards a sustainable PEC water-splitting application.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3