Effect of silver inhibition on the ceramic foam as flame suppression

Author:

Hamzah Nur Faazila,Kasmani Rafiziana Md.,Chandren Sheela

Abstract

Aluminium dust explosions pose significant safety and economic challenges in various industrial processes. Due to this, the current research explores an innovative approach by inhibiting the silver nanoparticles (Ag NPs) to ceramic porous form substrate as a flame suppressant in order to mitigate the risks associated with these explosions. The antimicrobial and non-toxic qualities of silver are also attractive to be applied in medical and food technology. However, the interfacial adhesion between the metallic (nanosilver) and non-metallic (silica-based-ceramic) is still vaguely studied due to the mechanical and surface energy mismatch between the organic surface and the inorganic layers. From this study, the physicochemical and mechanical properties of the silver-coated ceramic foam were analyzed using X-ray diffraction, field emission scanning electron microscopy with energy dispersive X-ray, thermogravimetric analysis, and compression test. From the mechanical testing, it was found that the percentage increase of maximum load for silver-ceramic foam from the original ceramic foam was about 60%. The results indicate that silver-coated foam has a better compressive strength of 0.93 MPa as compared to 0.58 MPa by the original ceramic. The inhibition effect of Ag NPs powder on the explosion pressure evolution and flame spread mechanism of aluminium powder at different concentrations and particle sizes was tested using the Hartmann experimental system.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3