Integration of GNSS-IMU for increasing the observation accuracy in Condensed Areas (Infrastructure and Forest Canopies)

Author:

Cahyadi Mokhamad Nur,Rwabudandi Irene

Abstract

Position determination using satellite navigation system has grown significantly. It provides geospatial with global coverage called GNSS (Global Navigation System Satellite). GNSS satellites consists of GLONASS, GPS (Global positioning system) and Galileo.GPS is the most commonly used system and it is known to its capability to determine 3D position on the surface of the earth. In order to determine the position, a GPS receiver must be able to receive signals from at least four GPS satellites. However, the determination of position in condensed areas such as tunnels, area surrounded by high rise buildings, highly forested and in other closely-knit areas is not achieved because satellite signals cannot reach the receiver in the above-mentioned areas and also others where the signals are reflected before being received by a GPS receiver. In this paper, we present the algorithm to fuse GPS and the inertial measurement unit (IMU) to enable positioning in the above-mentioned Condensed Areas. The standard deviations of the two measurements show that GPS-IMU is better than GPS alone, the standard deviation when satellite outages occurred is - 4.57475 for GPS-IMU measurements and 0.218675 for GPS observations. We presented the results in graphics and it shows that GPS measurements are easily disturbed by external influence such as multipath but GPS-IMU graphic is continuous and robust. The advantages and disadvantages of GPS and INS are complementary and make them work together to enable the accurate measurements in the areas mentioned above. Integration of INS and GNSS can be classified into three types, loosely coupled Kalman filter, tightly coupled Kalman filters and ultratight coupled Kalman filter. In this research we used loosely coupled Kalman filter and tightly coupled Kalman filters to combine GPS and INS in one system.

Publisher

EDP Sciences

Reference5 articles.

1. Seeber G. Satellite Geodesy. New York: Walter de Gruyter. (2003).

2. Munguia R. A GPS-aided Inertial Navigation System in Direct Configuration. Journal of Applied Reasearch and Technology, 803-814. (2014).

3. Zhou J., & Bolandhemmat H. Integrated INS/GPS Syatem for an Autonomous Mobile Vehicle.

4. Bulut Y., Cavanaugh V.D., & Bernal D. Process and Measurement Noise Estimation for Kal,an Filtering. Proceeding of the IMAC-XXVIII. (2010).

5. Suzdaleva E. Initial Condition for Kalman filtering: prior knowledge specification. Proceeding of the 7th conference on 7th WSEAS International conference on systems Theory and scientific Computations, 45-49. (2007)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3