Application of New Approaches to the Hydropower Combined Complex Creation for Autonomous Energy Supply

Author:

Volkov A. V.,Ryzhenkov A. V.,Druzhinin A. A.,Vikhlyantsev A. A.,Orakhelashvili B. M.,Baikov V. N.,Šoukal Jiří,Sedlař Milan,Komárek Martin,Pochylý František,Rudolf Pavel,Fialová Simona

Abstract

The report examined new scientific approaches to the creation of a combined cogeneration energy complex based on small or micro-hydropower. The most effective approaches to micro-hydropower facilities were considered to create a workable structural layout. A criterion has been developed that allows to evaluate the energy efficiency of hydroturbines at an early stage of design using the calculation method, including a predictive estimate of the hydraulic resistance function ξHT = f(Re) of a particular penstock geometry. The results of the theoretical task of creating a technologically advanced configuration of a blade system using Zhukovsky theory. By calculating and numerically (CFD) simulating the hydrodynamic lattices of flat profiles, the theoretical nomograms for determining the coefficients Cx and Cy are confirmed and supplemented. A series of comparative results of computational and experimental studies of the combined energy complex hydraulic part – microhydroturbines with experimental blade systems, including those modified by the principle of biomimetics (nature imitation technologies) is presented. Based on the calculated and experimental studies, the prospects of the chosen direction of development of small and microhydroenergy are shown, as well as the effectiveness of the approaches that were used in the design of the working bodies of microhydroturbines.

Publisher

EDP Sciences

Reference8 articles.

1. Matters Concerned with Development of Autonomous Cogeneration Energy Complexes on the Basis of Microhydropower Plants

2. Ho-Yan B. P., Design of a Low Head Pico Hydro Turbine for Rural Electrifi-cation in Cameroon MSc Thesis University of Guelph, Ontario, Canada, 2012

3. Lomakin A. A., Centrifugal and axial pumps (Moscow: Engineering), 364 (1966)

4. Barlit V. V., Hydraulic turbines (Kiev: Higher School), 360 (1977)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3