Utilization of biomass wastes: coconut and Pangium edule shells as activated carbon for energy storage device material

Author:

Susanti Diah,Nurdiansah Haniffudin,Pramata Azzah Dyah,Noor Rohmanuddin Tubagus,Fajarin Rindang,Rakhmawati Yeny Widya,Kusuma George Endri,Bahfie Fathan

Abstract

In this research, activated carbon (AC) was synthesized from biomass wastes of coconut and Pangium edule shells and utilized as a material for electrochemical double-layer capacitors (EDLC), which are eco-friendly energy storage devices. This research was intended to bridge the need for greenhouse gas-free energy storage device and the handling of abundant biomass wastes. These efforts would undoubtedly contribute to mitigating climate change. To begin the research, the coconut and Pangium edule shells underwent carbonization at varying temperatures of 600°C and 700°C for 2 hours. Subsequently, they were subjected to chemical activation using KOH and physical activation at varying temperatures of 110°C and 600°C. Some characterization techniques, including SEM, XRD, TGA/DSC, BET, Iodine number, and proximate analysis, were employed to analyze the materials. The capacitive properties of EDLC electrodes were assessed through cyclic voltammetry (CV). After carbonization at 700°C and subsequent physical activation at 600°C, the coconut and Pangium edule shells exhibited the highest active surface area of 548.542 m2g-1 and 333.4 m2g-1, respectively. Notably, the EDLC demonstrated a maximum specific capacitance of 364.5 Fg-1 at 2 mVs-1 scan rate. These findings indicate the viability of utilizing AC from biomass waste as a promising material for EDLC applications.

Publisher

EDP Sciences

Subject

General Medicine

Reference9 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3