Mechanical Properties of Recycling Mixed Waste Plastic Predicted on Pallet Application Using Finite Element Analysis

Author:

Taqwatomo Galih,Novriadi Dwi,Marsaputra Panjaitan Boy,Prasetyo Hariaman,Subagyo Yusuf,Eka Mulyono Aditya,Rahayu Sri,Kusuma Arti Dewi,Pradipta Arjasa Putra Oka

Abstract

The enormous use of plastic in any live sector will impact the waste plastic escalation. Unsorted and uncollected wasted plastic properly leads to the creation of mixed waste plastic in landfills. Therefore, mechanical recycling technology for processing mixed waste plastic into pasta phase has been developed. In this research, four sources of mixed waste plastic were implemented derived from household plastic bags (WPB), waste of plastic sack (WPS), waste of used carton beverage (WPAL) and waste plastic from drum pulper in pulp industry (WPI). Those materials were transformed into specimens through extrusion and compression molding, then tested for investigation the mechanical properties. A comparison of density, tensile strength, and compressive strength from each material was exposed comprehensively. Furthermore, finite element analysis (FEA) was employed to compute the reliability of recycle material properties in the pallet application under the racking condition test following ISO 8611 standard. Surprisingly, it was reported a potential performance with a maximum racking load until 700 kg for pallet product using all variants of mixed waste plastics. The maximum capacity was obtained based on consideration of the FEA result exhibited in tresca or maximum shear stress, total deformation, and factor of safety design.

Publisher

EDP Sciences

Reference31 articles.

1. World Economic Forum, Radically Reducing Plastic Pollution in Indonesia: A Multistakeholder Action Plan. (2020)

2. Plastics recycling: challenges and opportunities

3. Shi Y., Rabin T., Mark C., Tony C., Mohan J., Robert S. A., “Mechanical Properties Of Recycled Plastic Fibres For Reinforcing Concrete, in Fibre Concrete 2013, Prague, Czech Republic, September 12 -13 (2013).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3