Punching shear strength under static and dynamic loads

Author:

Trekin Nikolai,Krylov Vladimir,Andrian Konstantin

Abstract

Modern domestic calculation methods and developed countries for determining the bearing capacity of monolithic reinforced concrete slabs for punching do not fully take into account all factors of design solutions and operating conditions. The available design provisions are made for the static operation of structures and there are no recommendations for taking into account the features of the dynamic impact on the overlap and the nature of the work of the node interfaces. The accepted empirical assumptions of the calculation, based on numerous experimental data, do not take into account the features of the stress-strain state of the coupling of the overlap with the column during destruction according to the punching scheme. This is due to the lack of computational models in which all the acting internal forces ensuring the resistance of the interface to penetration would be considered comprehensively. The complexity of the problem is due to the fact that the sections of the nodal interface are in an inhomogeneous stressed state. The stress-strain state of plates for punching under dynamic load is currently little studied. This article proposes a method for determining the bearing capacity of a symmetrical nodal coupling of a column with an overlap for punching under static and short-term dynamic loading. The proposed design model of the punching strength is based on the following prerequisites: the resistance to punching of a monolithic reinforced floor consists of the shear resistance along the surface of the reduced punching pyramid formed by the height of the compressed concrete zone; the strength of the concrete shear resistance increases due to volumetric compressive forces on the surface of the reduced punching pyramid; the angle of inclination of the faces of the punching pyramid depends on the loading speed. The obtained theoretical dependences are applicable under static and dynamic loading and are in satisfactory agreement with experimental data.

Publisher

EDP Sciences

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3