A review on vibration energy harvesting

Author:

Na Liu,Yuhao Wan,Huanqing Han,Tongshuo Liu

Abstract

Vibration energy capture devices can convert the mechanical energy from ambient source into electrical energy. The captured electrical energy can provide energy for low-power devices such as microelectromechanical systems(MEMS) as a supplement to the power system. Vibration energy has been widely concerned by researchers because of the characteristics of easy access and green. The conversion of mechanical vibration energy into electrical energy can be achieved by electromagnetic, electrostatic, piezoelectric, magnetostrictive, dielectric elastomer and emerging friction nano-types. This paper have discussioned some parts of the vibration energy harvesting: collection principle, collection method and the energy storage circuit. At present, the research and design of mechanical vibration energy harvesting structures focus on three aspects: broadening the collection frequency band, collecting dimensions and improving efficiency. Finally, the future direction of energy harvesting research is predicted.

Publisher

EDP Sciences

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Govan-Partick Pedestrian Bridge: Piezoelectric Energy Harvesting from Footfall-Induced Vibrations;Sensors & Instrumentation and Aircraft/Aerospace Testing Techniques, Volume 8;2023-11-22

2. Energy Harvesting Systems;Advances in Systems Analysis, Software Engineering, and High Performance Computing;2023-06-30

3. Mechanical Energy Harvesting Scheme, Implementation Aspects, and Applications;Energy Harvesting Trends for Low Power Compact Electronic Devices;2023

4. Design and optimization of a Vibrational MEMS-Based Energy Harvester;2022 17th Conference on Ph.D Research in Microelectronics and Electronics (PRIME);2022-06-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3