Enhancement of the thermal conductivity of sands via microbially-induced calcite precipitation

Author:

Martinez Alejandro,Huang Lin,Gomez Michael G.

Abstract

Energy piles and ground source heat pump systems have been shown to provide sustainable alternatives for temperature regulation in buildings and other applications such as road de-icing. However, their efficiency can be undermined in partially-saturated and dry sandy soils due to the relatively low thermal conductivity (kt) of these materials. Microbially-Induced Calcite Precipitation (MICP) has been demonstrated to be an environmentally-conscious ground improvement technology capable of modifying the engineering properties of sandy soils including increases in shear stiffness and strength and decreases in hydraulic conductivity. These improvements result from the precipitation of calcium carbonate crystals at inter-particle contacts and on particle surfaces. This paper presents results from a soil column study aimed at investigating changes in soil kt during MICP treatments and subsequent desaturation using a poorly- graded sand. The results indicate that while bio-cementation can increase soil kt, the level of enhancement depends on the degree of saturation. For instance, increases of up to 330% were measured under dry conditions while only modest increases of about 15% were measured under saturated conditions. MICP treatment may therefore be most effective at enhancing the kt of partially-saturated and dry sands. In addition, the similarity between the evolution of kt and shear wave velocity (Vs) during MICP treatment suggests that kt may provide a new method to assess cementation level and contact quality.

Publisher

EDP Sciences

Reference22 articles.

1. Energy foundations and other thermo-active ground structures

2. Farouki O.T.. CRREL Monograph (US Army Corps of Engineers, Hanover, N.H., 1981).

3. Yun T.S., Santamarina J.C., Gran. Matt. 10, March (2008).

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3