A model for ultimate bearing capacity of piles in unsaturated soils under elevated temperatures

Author:

Thota Sannith Kumar,Vahedifard Farshid

Abstract

Geo-energy applications such as energy piles can expose unsaturated, deep foundation soils to elevated temperatures. This paper presents a closed-form equation for the ultimate bearing capacity of piles in unsaturated soils subject to elevated temperatures under drained conditions. For this purpose, a temperature-dependent effective stress model was incorporated into calculations of skin resistance and end bearing resistance of piles. The proposed temperature-dependent model is an extension of the modified β method for determining the ultimate pile bearing capacity of unsaturated soils under drained conditions. Employing the proposed model, a parametric study was carried out to evaluate the ultimate pile bearing capacity for hypothetical clay and silt soils at temperatures ranging from 25 °C to 55 °C. For both clay and silt, the results indicated that the ultimate pile bearing capacity varies with an increase in temperature. Different trends with temperature were observed for clay and silt. A monotonic increase in pile resistance was observed in clays. For silt, the pile resistance increased at relatively low matric suction whereas it decreased at higher matric suctions.

Publisher

EDP Sciences

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3