Elasto – plastic modelling of the behaviour of non - active clays under chemo – mechanical actions

Author:

Musso Guido,Scelsi Giulia,Della Vecchia Gabriele

Abstract

Environmental variables such as temperature, matric suction and pore fluid composition are well known to influence the hydro-mechanical behavior of clays and shales. The type and the relevance of this influence depends on the mineralogical composition and on the fabric of the material. Soil activity is an engineering proxy for mineralogical composition which can be used for a preliminary characterization of the expected type of behaviour under chemical actions, if those do not imply very significant cation exchange or pH variations. Very large chemo-mechanical effects occur in highly active soils used in engineering works such as barriers for nuclear waste or landfills, however concentration changes also impact on the mechanical behavior of non – active soils and rocks, such as illitic or natural blends of clays. Such materials are widely distributed in nature and their mechanical response upon chemical changes can be problematic in many cases. Examples of engineering relevance include vast slope instabilities promoted by fabric changes due to desalinization in Scandinavian quick clays, and instability or convergence issues for boreholes drilled in shales exposed to muds with a different chemical composition from the one of the pore fluid. An elastoplastic model is formulated to simulate the volumetric behaviour of such materials along chemical and mechanical loads. In addition to the parameters of the Modified Cam Clay, it requires defining the dependency of the elasto-plastic compliance and reference void ratio on pore fluid salinity. The model performs well against experiments from literature where complex chemo-mechanical histories were imposed.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3