Improving the transfer learning performances in the classification of the automotive traffic roads signs

Author:

Barodi Anass,Bajit Abderrahim,Benbrahim Mohammed,Tamtaoui Ahmed

Abstract

This paper represents a study for the realization of a system based on Artificial Intelligence, which allows the recognition of traffic road signs in an intelligent way, and also demonstrates the performance of Transfer Learning for object classification in general. When systems are trained on the aspects of human visualization (HVS), which helps or generates the same decisions, the construct robust and efficient systems. This allows us to avoid many environmental risks, both for weather conditions, such as cloudy or rainy weather that causes obscured vision of signs, but the main objective is to avoid all road risks that are dangerous to achieve road safety, such as accidents due to non-compliance with traffic rules, both for vehicles and passengers. However, simply collecting road signs in different places does not solve the problem, an intelligent system for classifying road signs is needed to improve the safety of people in its environment. This study proposed a traffic road sign classification system that extracts visual characteristics from a Convolution Neural Network (CNN) classification model. This model aims to assign a class to the image of the road sign through the classifier with the most efficient optimized. Then the evaluation of its effectiveness according to several criteria, using the Confusion Matrix and the classification report, with an in-depth analysis of the results obtained by the images that are taken from the urban world. The results obtained by the system are encouraging in comparison with the systems developed in the scientific literature, for example, the Advanced Driving Assistance Systems (ADAS) of the sector automobile.

Publisher

EDP Sciences

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3