Application of machine learning methods for crop rotation selection in organic farming system

Author:

Maksimovich Kirill Yu.,Kalichkin Vladimir K.,Fedorov Dmitry S.,Aleschenko Vitaly V.

Abstract

This study demonstrates the possibility of crop rotation selection based on the assessment of productivity and sustainability of crop production under different atmospheric moisture conditions. The study considers 8 crop rotations oriented to grain production. The data obtained in long-term field experiments in the forest-steppe of the Novosibirsk region were used. As a result of the implementation of the decision tree (CART) and the use of ensemble algorithm (Random Forest) the construction of a model characterized by a fairly high predictive ability was performed. Standardized Precipitation Index was chosen as the main predictor characterizing atmospheric moistening in different periods of vegetation. The most stable from the point of view of stability of crop yield – grain-fallow with winter rye, grain-fallow with legumes (vetch-oats), in conditions of manifestation of atmospheric drought of different severity were selected. The possibility of using machine learning methods (CART, Random Forest) as effective tools in the selection of crop rotation for sustainable grain production without the use of chemicalization in soil and climatic conditions of Siberia, as well as the assessment of possible risks in the transition of crop production to organic technologies were scientifically substantiated.

Publisher

EDP Sciences

Reference33 articles.

1. Kiryushin V.I., Agroecological assessment of land, designing adaptive landscape agricultural systems, and agrotechnologies. Methodological guide (Moscow, Federal State Budgetary Institution “Rosinformagrotekh”, 2005)

2. Gorodetsky I.Y., Sergeev A.E., Mathematics in land management, Fundamental and Applied Scientific Research: Current Issues, Collection of Articles of the 20th International Scientific and Practical Conference: MCNS “Science and Enlightenment”, Penza, Russia (2019)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3