Effects of ions on the characteristics of monolayer at brine/oil interfaces

Author:

Alotaibi Mohammed B.,Cha Dongkyu,Chand Karam,Yousef Ali A.

Abstract

The advanced waterflooding technologies through salinity and ionic content adjustment can make favorable impacts on rock wettability and oil recovery. In carbonate reservoirs, SmartWater at low ionic strength showed strong chemical interactions with carbonate minerals and oil components. As a result, several hypotheses are proposed in literature as ionic exchange, rock dissolution, surface charges and others. The applied macroscopic and microscopic technologies have certain limitations in identifying the structures at interfaces especially at monolayers. In this paper, advanced Sum Frequency Generation (SFG) spectroscopy is utilized for the first time to characterize the chemical structures of molecules at the brine/oil interfaces. Different brines recipes and model oil are tested to determine the effects of individual and combined ions on the monolayer structures. Stearic acid is also mixed with hydrocarbons to mimic the acidity condition of fluids in the reservoir. The change in the chemical structure is mo nitored with time at a broad wavenumber range from 1,000 to 3,800 cm-1. Distinct spectral signatures of oil components and water ions are detected at different pH conditions. The SFG data is compared with the previous macroscopic wettability results to predict the components that are highly affected during waterflooding and enhanced oil recovery (EOR) processes. This study brings new insights on understanding the chemical structures at the thin monolayers of flat and curved geometric at different aqueous interfaces. The measured spectra, coupled with a wide range of laser polarization settings, and signal intensity trends are discussed in terms of composition, and structure of organic and inorganic components. For example, the intensity for SmartWater at certain wavenumber is three folds higher when compared to high salinity water. This indicates that the interactions at oil/water interfaces are enhanced at lower ionic strengths. In addition, these findings are also confirmed with similar behaviors at a higher salinity brine as connate formation brine. The novelty of this interfacial study can provide better understanding of the reaction mechanisms altering the ionic strength and salinity of injection water and its impact due to the changes in geometric interfaces. Such understanding is also crucial to optimize the chemistry of injection water and its interaction with oil components and carbonate rock, to ultimately alter wettability toward water-wet.

Publisher

EDP Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3