Design and experimental research of a quadrocopter flying robot

Author:

Suchanek Grzegorz,Ciesielka Wojciech

Abstract

The drone is an unmanned aerial vehicle. Currently, many commercially available remote controlled flying toys are used to be called drones. This is an erroneous nomenclature, because the drone must have an autonomus flight function implemented. Due to it's simple mechanical construction, the most popular drones are in the form of a multirotor, in which arrangement the engines are placed in one plane. One of the most important advantages of this type of robots is the ability to maintain a certain position in space. Today, this allowed for e.g. taking photos from the air or inspecting hard-to-reach places. For use for environmental protection purposes, drone equipped with appropriate sensors and instrumentation may be used to monitor air pollution. The mechanical part of a quadrocopter flying robot was based on a TAROT frame with a 450mm engines spacing. The frame has been expanded with a dedicated set of legs to raise the clearance up to 150mm. Four dedicated EMAX MT2213 electric motors were installed on the frame, which are the main drive. They are characterized by the propeller hub-free-mounting, which minimizes possible imbalances. A single engine cooperating with a dedicated 10-inch propeller and a 4.5-inch pitch generates a maximum thrust of a 0.85kg. In the case of this system, it sums to a total of 3.4 kg. The weight of the ready to flight robot is 1.35 kg. To power the robot, a lithium-polymer battery with a capacity of 2.2 Ah is used, providing flight time of about 8 minutes. The basic work mode of the robot is a manual one, which means a self leveling mode with manual control. In addition to this mode, an autonomous navigation mode using GPS coordinates has been implemented. This navigation mode was also been tested during field tests. The operation of this navigation mode is very similar to the position maintaining mode, but operates on a larger scale. The robot in this mode is vectorically controlled, performing forwards/backwards and sideways movements to the set location.

Publisher

EDP Sciences

Reference16 articles.

1. Technical design and construction of flying platform type quadrocopter

2. Gheorghiţă D., Vîntu I., Mirea L., Brăescu C.: Quadcopter Control System. Modelling and Implementation, IEEE, 19th International Conference on System Theory, Control and Computing (ICSTCC), October 14-16, pp. 421-426, (2015)

3. Flight controller dedicated for unmanned flying objects

4. Velan Y. M.: Cost Effective Design and Development of Manned Drone, IEEE, First International Conference on Recent Advances in Aerospace Engineering (ICRAAE), (2016)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Lithium Battery SOC Estimation Based on EKF-DEKF Composite Model;Manufacturing Technology;2023-12-07

2. Modelling and simulation tests of a quadrocopter flying robot;New Trends in Production Engineering;2019-10-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3