Study on Adsorption Performance of Fe-Modified ZIF-67 Bimetallic Organic Framework for Toluene

Author:

Ji Fengjun,Jiao Dong,Wang Heng,Cao Qing,Guo Jingchuan,Cao Xuankai,Li Yanteng,Gao Yan

Abstract

Volatile Organic Compounds (VOCs) are significant contributors to air pollution and play a crucial role as precursors for secondary pollutants such as O3, thereby posing severe health risks and attracting global attention. ZIF-67, a metal-organic framework (MOFs), possesses a porous microstructure and high specific surface area, offering exceptional adsorption performance, catalytic activity, and structural stability. In this investigation, a solvent-thermal method was employed to synthesize a series of Fe-modified ZIF-67 denoted as FCMx. The impact of Fe doping and temperature on the dynamic adsorption performance of toluene was examined. The results revealed satisfactory adsorption performance of FCMx when the Fe doping was 14 mol%. FCM14 achieved saturation adsorption of toluene in approximately 5000 s, exhibiting a saturated adsorption capacity of 1769.80 mg/g at 25 °C. This represented a 25% improvement in adsorption time and a 30% increase in saturated adsorption capacity compared to undoped ZIF-67. Furthermore, at a reaction temperature of 150 °C, FCM14 exhibited saturation time of approximately 4300 s and a saturated adsorption amount of 1471.43 mg/g, indicating a combined effect of chemical and physical adsorption. The findings of this research provide valuable experimental data and theoretical support for the potential industrial application of MOFs in VOC adsorption.

Publisher

EDP Sciences

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3