Exploring the Research Progress and Application Prospects of Nanomaterials for Battery Positive and Negative Electrodes

Author:

Wu Yuxi

Abstract

With the development of science and technology, conventional lithium-ion batteries (LIBs) can no longer meet the needs of people. Due to the large particles and small specific surface area of the traditional electrode materials in LIBs, the embedding and dislodging efficiency of lithium ions in the materials is low, thus limiting the energy density of the batteries. During the charging and discharging process, the conventional electrode materials are prone to volume expansion and structural damage, leading to capacity decay and performance degradation. In addition, the ion and electron transport properties of traditional electrode materials are poor, resulting in a limited charging and discharging rate of the battery. The emergence of nanotechnology has opened a new path for the development of battery technology. It not only significantly improves the energy density and power density of LIBs, but also helps to solve the problems of volume expansion and structural damage of LIBs during charging and discharging. More importantly, nanotechnology can improve the safety performance of LIBs. This paper mainly discusses the application of nanotechnology in the electrode materials of LIBs, analyzes the shortcomings of the existing technology, and looks forward to the development of LIBs.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3