Progress in the application of silicon-based anode nanotechnology in lithium batteries

Author:

Tang Jiajun

Abstract

With the development of technology, graphite materials in traditional lithium batteries can no longer meet people’s needs due to their relatively low specific capacity, limited charging and discharging rates, and poor safety. Silicon has a very high theoretical specific capacity, far exceeding traditional graphite negative electrode materials, making silicon nanoparticles an ideal choice for improving the energy density of lithium-ion batteries. In this paper, we first introduce the silicon nanoparticle anode and its preparation methods: mechanical ball milling, and thermal cracking, and introduce the application of binders in it. Secondly, the silicon nanowire anode and the chemical deposition method for its preparation are introduced, and the high-performance silicon nanowire lithium battery of Amprius is introduced. Thirdly, the preparation of silicon thin film anode and two types of composite film was introduced. Finally, the three types of silicon nano anodes are summarized and prospected. This paper has reference significance for the future research of silicon-based lithium-ion batteries.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3