Optimization Sugarcane and Paddy Waste as Bio-Composite Material to Absorb Impact Force

Author:

Arendra Anis,Yusron Rifky,Prasetyo Teguh

Abstract

Agricultural waste such as sugarcane and paddy are common during harvesting to production process. Sometimes they burned after the harvest process, as consequently the environmental problem got multiply. Demand for Composite Material got inflate recently, because they are lighter and stronger than Polyethylene Plastic. Filler in composite materials is expensive and requires precise design. The aim of this research is to create cheap and eco-friendly composite materials, besides raised value of agricultural waste. The composite material using sugarcane bagasse as fibre, paddy chaff powder applied as filler and polyester resin as matrix. In this study, we varied the fibre direction with composition of sugarcane bagasse and paddy chaff powder. In this research fibre direction has three levels they are 0, 45 and 90 degrees. Composition between sugarcane bagasse, paddy chaff powder and polyester resin ratio has three levels they are 15:15:70, 12.5:12.5:75 and 10:10:80. ANOVA test shown fibre direction has significant influence to ability of the material to absorb impact energy 78.14 percent than fibre composition 12.10 percent. The highest impact absorb value is 0.3 degrees Joule on composition ratio paddy chaff: sugarcane: polyester resin is 15:15:70 and 45 degrees fibre direction.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3