Design and Build a Smart Door Lock Using the Deep Learning Convolutional Neural Network Method

Author:

Joni Koko,Rahmawati Anita Ima,Sukri Hanifudin

Abstract

The world is currently being hit by the COVID-19 virus. In this New Normal era, a rule is enforced that everyone must wear a mask wherever we are. Checking masks and body temperature is still done manually or by human observation, thus allowing for inaccuracies in observing and checking temperature. The problem occurred at Trunojoyo Madura University which still uses a manual mask and body temperature checking system. So, for accuracy and to reduce the risk of contracting officers. A tool was created to detect the mask and temperature automatically. In this study using a camera, temperature sensor MLX90614, and proximity sensor using Raspberry Pi. This research uses a machine learning system with the Deep Learning Convolutional Neural Network (CNN) Single Shot Detector (SSD) method. From this study, the results of mask detection obtained a success percentage of 93.4% and an error percentage of 6.6% from the entire test and obtained an average detection time of 2.63 seconds. And the average time of the whole system is 3.8 seconds. In this study, there was a delay during detection due to the heavy computational load on the system, so for further research, use a mini pc that has better performance.

Publisher

EDP Sciences

Reference12 articles.

1. Sebaran Covid-19 Kabupaten Bangkalan (Distribution map Covid-19 Bangkalan District Update Data per 26 June 2021),” District government Bangkalan, 26 June 2021. [Online]. Available: http://www.bangkalankab.go.id/v6/read/informasi/521-peta-sebaran-covid-19-kabupaten-bangkalan-update-data-per-26-juni-2021. [Accessed 26 June 2021].

2. Wibowo P. T., Joni K. and Ibadillah A. F., “Implementasi Neural Network Untuk Klasifikasi Tulisan Tangan Menggunakan KERAS (Neural Network Implementation for Handwriting Classification Using Keras),” (2019).

3. KLASIFIKASI BATIK RIAU DENGAN MENGGUNAKAN CONVOLUTIONAL NEURAL NETWORKS (CNN)

4. Zufar M. and Setiyono B., “Convolutional Neural Networks untuk Pengenalan Wajah Secara Real-Time (Convolutional Neural Networks for Real-Time Face Recognition),” Jurnal Sains dan Seni ITS, vol. 5, no. 2, (2016).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3