Age estimation through facial images using Deep CNN Pretrained Model and Particle Swarm Optimization

Author:

Muliawan Nicholas Hans,Angky Edbert Valencio,Prasetyo Simeon Yuda

Abstract

There has been a lot of recent study on age estimates utilizing different optimization techniques, architecture models, and diverse strategies with some variations. However, accuracy improvement in age estimation studies remains a challenge due to the inability of traditional approaches to effectively capture complex facial features and variations. Therefore, this study investigates the usage of Particle Swarm Optimization in Deep CNN models to improve accuracy. The focus of the study is on exploring different feature extractors for the age estimation task, utilizing pre-trained CNN models such as VGG16, VGG19, ResNet50, and Xception. The proposed approach utilizes PSO to optimize the hyperparameters of a custom output layer for age detection in regression. The PSO algorithm searches for the optimal combination of model hyperparameters that minimize the age estimation error. This study shows that fine-tuning a model can lead to improvements in its performance, with the VGG19 model achieving the best performance after fine-tuning. Additionally, the PSO process was able to find sets of hyperparameters that were on par or even better than the initial hyperparameters. The best result can be seen in VGG19 architecture with loss of 86.181, MAE of 6.693, and MAPE of 38.462. Out of the twelve experiments conducted, it was observed that the utilization of Particle Swarm Optimization (PSO) offered distinct advantages in terms of achieving better results for age estimation. However, it is important to note that the execution time for these experiments was considerably longer when employing PSO.

Publisher

EDP Sciences

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3