Experimental research of dynamic vibration damping for rigid busbar structures

Author:

Fomenko Serafim,Garanzha Igor,Tanasoglo Anton

Abstract

Introduction: in the case when flexible structures interact with the wind flow, various phenomena of aerodynamic instability may arise. Typical representatives of such phenomena are vortex wind excitation of cylindrical structures, galloping of poorly streamlined structures with a square, rectangular or rhomboid cross-section, etc. The article highlights some basic ways of damping vibrations of rigid busbar structures. Materials and methods: the method of dynamic vibration damping consists in attaching additional devices to the vibration protection object to change its vibration state. The work of dynamic dampers is based on the formation of force effects transmitted to the object. It differs from another method of vibration reduction, characterized by the imposition of additional kinematic connections on the object such as fixing its particular points. Results: a mathematical model of the plate dynamic damper operation with a point load is presented. To determine the optimal parameters of dynamic vibration dampers, their calculation was performed, taking into account the joint action of the rigid busbar and the damper. Experimental research of the conjoint work of a rigid busbar with a plate dynamic damper is carried out. Conclusions: the effective application of plate dynamic dampers with a point load has been confirmed both outside and inside the tube busbar. Is proposed the special plate vibration damper. This allows to increase the logarithmic decrement of oscillations by 3-3.5 times and reduce the amplitude of oscillations of rigid busbar structures in the resonant mode by 12 time.

Publisher

EDP Sciences

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3