Author:
Cao Guoliang,Li Ruixin,Qi Lei,Ning Chen
Abstract
The “double carbon” target is a medium-to-long-term national strategy proposed by China to combat climate change. The industrial sector is one of the key areas for the implementation of the “double carbon” target. Therefore, studying the association between carbon emission factors and carbon emissions is crucial to reduce greenhouse gas emissions from industrial activities. In the present study, the association between factors affecting carbon emissions and carbon emissions in a circular economy were investigated for an industrial park in Northwest China. A carbon emission system dynamics model for this circular economy industrial park was constructed, in reference to the relevant national policies and the current condition of the park. Five different scenarios were utilized to dynamically simulate the impact of rapid economic development, energy restructuring, industrial restructuring, and technological development, and carbon emission reduction paths for industrial parks were explored. The results showed that, the park would peak at 1134.67 thousand tons of CO2 in 2032, according to the baseline scenario, with industrial energy consumption accounting for over 80% of the total emissions. A combined regulation scenario, with increased investment in research and development and environmental management, would achieve a peak in 2030, with a relatively lower peak of 1062.88 thousand tons of CO2. Our findings provides new insights into the paths of carbon emission reduction in recycling industrial parks.