High Temperature Performance of Rubber-Modified Asphalt Mixtures in Water-Light-Heat Coupled Environment

Author:

Wei Ming,Deng Shenwen,Wei Li,Rong Hongliu,Meng Yongjun

Abstract

Asphalt pavement has been repeatedly subjected to vehicle loads during service. The probability and risk of water damage and asphalt deterioration of asphalt pavements is relatively higher in high temperature and rainy areas such as the Guangxi region of China. In this paper, the changes in rubbermodified asphalt and its mixtures under high temperature, water cycling, and ultraviolet light have been investigated. The coupled water-light-heat effects on asphalt pavements were simulated by developing a freeze-thaw cycle test protocol and a UV environment simulator. The high temperature performance of asphalt and asphalt mixtures before and after aging was compared and statistically analyzed by indoor tests of needle penetration, ductility, softening point, rutting factor and dynamic stability. Under water-light-heat coupling, rubberized asphalt showed a deeper degree of aging, accelerated conversion of asphalt to a highly elastic material, and an increased tendency to reduce flow capacity. The results showed decreasing dynamic stability of rubberized asphalt mixtures with decreasing needle penetration and ductility, increasing softening point, increasing rutting factor and decreasing phase angle. The effect of UV light on asphalt needle penetration was more significant, while the number of freeze-thaw cycles had a more pronounced effect on softening point.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3