Exploration of HVAC system sizing based on building performance simulation and Monte Carlo method

Author:

Wang Yi-Han,Chang Hsin-Jou,Chen Wei-An,Hwang Ruey-Lung,Wu Yen-Hui

Abstract

This study uses the Monte Carlo method and building performance simulations to develop an additive model for rapid peak load forecasting at design phase that considers the effects of design parameters. The Monte Carlo method generates numerous of simulation cases and EnergyPlus software is used for the calculations. Specifically, a total of 20 parameters were considered for analysing the peak load calculations, including design day conditions, envelope performance, infiltration, etc. An office building was selected as the reference building. With the screening experiments and the standard regression coefficient, it was identified that there are 15 important parameters for peak cooling load in the perimeter zones and 7 in the core zone. Main effects and interactions for selected parameters were determined by factorial experiments of 40,000 runs for the perimeter zone and 1,287 runs for the core zone. Main effects and interactions were used to develop an additive model between design parameters and peak cooling loads. Finally, model validation by additional 1,000 cases shows a coefficient of determination of 0.995, with a mean bias error of 3.2%, and a coefficient of variation of 3.7%, which indicated that the developed additive model had high accuracy.

Publisher

EDP Sciences

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3