Comparing the thermal performance of Living Lab monitoring and simulation with different level of input detail

Author:

Zinzi Michele,Botticelli Martina,Fasano Francesca,Grasso Paolo,Chiesa Giacomo

Abstract

Dynamic envelope solutions are critical to achieve comfort conditions minimizing the need of active air conditioning systems, emphasizing the potential of thermal adaption of the building occupants. Dynamic systems are, however, difficult to be implemented in European building energy certification schemes, based on semi-stationary calculation method, standard uses and reference boundary conditions. In the attempt to develop a flexible and dynamic method able to reduce the performance gap between real and expected performance, this paper presents the comparison between measurements and simulations of a Living Lab office operated in thermal free floating, with different strategies for the solar protection and the night ventilative cooling. Simulations were performed using the dynamic platform PREDYCE, which allows for manipulating monitored and simulated data. The first phase was dedicated to the model calibration using the indoor air temperature as relevant indicator against monitored data. The coefficient of variation of the root mean squared error is in the 8-9% range. Building simulations of the calibrated model demonstrated a large variation of the results as a function of the input data, with increase of discomfort hour up to a factor 20 and a reduction of discomfort hours up to 95%.

Publisher

EDP Sciences

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3