Calibration of BBM Parameters using the Modified State Surface Approach

Author:

Zhang Xiong,Riad Beshoy,Alonso Eduardo E.

Abstract

The Barcelona Basic Model (BBM) developed by Alonso et al. [1] is the first and the mostwidely used elasto-plastic model for unsaturated soils. The BBM successfully explained many key features of unsaturated soils and received extensive acceptance. However, there is lack of a well-establishedmethod for selecting parameter values for the BBM from laboratory tests, although a variety of methods have been recently developed for calibrating model parameters for the BBM. Concerns still exist on the correctness and robustness of such parameter value selection procedures. The above statements were evidenced by a recent benchmark exercise on selection of parameter values for the BBM organized within a "Marie Curie" Research Training Network on "Mechanics of Unsaturated Soils for Engineering"(MUSE)[2]. Experienced constitutive modelers in unsaturated soils from 7 prestigious teams were provided with the same experimental results on an unsaturated soil to calibrate the parameter values in the BBM. Theoretically, the calibrated parameters from different teams are expected to be the same or at leastvery close. However, the selected parameter values by the 7 teams are surprisingly widely different. This paper first discussed the limitations in the existing methods to calibrate the parameter values in the BBM. A novel approach was then proposed to calibrate the parameter values for the BBM. The approach takes advantage of the close-form solution of the BBM, which is derived based upon a newly proposed Modified State Surface Approach to study the unsaturated soils [3-6]. The same experimental data, used in the MUSE benchmark exercise, were reanalysed using the proposed approach to calibrate parameters for the BBM. The results were compared with those in the MUSE benchmark exercise from which thesimplicity, effectiveness, and robustness of the proposed method were evaluated.

Publisher

EDP Sciences

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Indefinability of Effective Stress for Unsaturated Soils;Journal of Geotechnical and Geoenvironmental Engineering;2024-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3