An Experimental Microstructural Characterization of High-quality, Load-preserved Fabric 1-D Consolidated Kaolinite Samples

Author:

Chow Jun Kang,Li Zhaofeng,Wang Yu-Hsing

Abstract

This paper describes a microstructural characterizations of high-quality, load-preserved fabric 1-D consolidated kaolinite samples, which covers from the beginning stage of clay sample preparation to the final stage of the microstructural analyses. To achieve this goal, a tailor-made oedometer is produced using the 3-D printing technique. First, a uniform kaolinite sample is prepared from a slurry state and then positioned into the 3-D printed oedometer for 1-D consolidation tests. Then, together with the applied loadings, the whole oedometer containing the consolidated kaolinite sample is submerged into the liquid nitrogen. This aims for preparing the dry sample by freeze drying, and at the same time, preserving the fabric associations for the subsequent microstructural characterizations. Afterwards, the sample is cut in half while frozen. An observation plane along the centre with the morphological information preserved is used for the scanning electron microscopy (SEM) analyses, and the remaining section is undergone the mercury intrusion porosimetry to obtain complementary information on the pore-size distribution. By ensuring the position and orientation of the SEM images taken, the number of SEM images, as well as the amount of particles and voids identified are maximized to enhance the statistical representation of the analysed results. In each sample, at least 3000 particles are identified, and the voids are segmented using proper binary images, of which their irregular shapes are further described using an equivalent ellipse. Fabric tensors are used to quantify the directional behaviour of the voids and particles. In addition, the shape evolution of the pores is examined to further understand the associated deformation mechanism. These comprehensive analyses provides quantitative evidences that the loading response of clay under 1-D consolidation is mainly governed by the inter-aggregate pores.

Publisher

EDP Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3