Study and optimization of a parallel hydraulic hybrid system for heavy vehicles

Author:

Di Lorenzo Camilla,Andretta Nicola,Rossetti Antonio,Macor Alarico

Abstract

The parallel hydraulic hybridization, thanks to its simplicity and high specific power, is a suitable solution for the retrofitting of off-highway vehicles subject to work cycles with frequent stop-and-go. This work is focused on the potential of the low-cost parallel hybrid solutions, i.e. characterized by current-technology components, for a specific class of heavy vehicles: city buses. After functional sizing, the hybrid vehicle was modelled and simulated in the Amesim environment. The comparison with the non-hybridized reference vehicle highlighted an interesting consumption reduction, which in any case varies with the type of route. Finally, an optimization of the hybrid vehicle was carried out by means of genetic algorithms, which led to a further, and not negligible, consumption reduction compared to the hybridized version. Optimization, therefore, can be seen as a tool to overcome those minimum benefit thresholds that manufacturers consider as necessary for the industrialization and marketing of new energy recovery systems.

Publisher

EDP Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design procedures for hybrid hydromechanical transmissions;Journal of Physics: Conference Series;2022-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3