Effect of Lagrangian-phase Modelling on Charge Stratification and Spatial Distribution of Threshold Soot Index for Toluene Reference Fuel Surrogates

Author:

Pessina Valentina,Borghi Massimo

Abstract

Nowadays, soot emissions are one of the major concerns in Direct Injection Spark Ignition engines. Soot prediction models can be computationally expensive, especially when particle mass, number, and size distribution are to be forecast. While soot formation heavily depends on the chemical and physical characteristics of the fuel, the simulation of the exact composition of a real gasoline is computationally unfeasible. Thus, it is essential to find simplified yet representative pathways to reduce the computational cost of the simulations. On the one hand, the a-priori investigation of the factors influencing particulate onset can be a simplified approach to compare different solutions and strategies with much cheaper costs than the modelling of soot formation and oxidation mechanisms. On the other hand, the use of surrogate fuels is a practical approach to cope with the fuel chemical nature. Although they poorly mimic the evaporation properties of a real gasoline, Toluene Reference Fuels are broadly adopted to match combustion relevant properties of the real fuels. In this study, the spatial distribution of the Threshold Soot Index in the fluid domain is investigated for three surrogates characterized by an increasing content of toluene (0 mol%, 30 mol%, 60 mol%). The correlation between the sooting tendency and the fuel distribution in the combustion chamber before spark ignition time can provide useful preliminary indications, without spending the computational effort of the whole soot model multicycle resolution. In particular, two approaches for the lagrangian description of the injected fuel are investigated: a multicomponent approach and a single component one, this last driven by a high-fidelity lumped modelling of the surrogate properties for both liquid and vapor phase.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3