The potential of CSP plants for remote communities in the MENA region

Author:

Ghirardi Elisa,Brumana Giovanni,Franchini Giuseppe

Abstract

The present work aims to investigate the load-following capability of a tower-based CSP plant assumed to cover a high fraction (90%) of the power demand of a mid-size remote community. The design of a CRS requires the determination of several variables (number of heliostats, layout arrangement, tower height, receiver dimensions) depending on the solar field size and the site location. In this paper, a two-step optimization procedure is presented. A preliminary optimization is carried out to define the solar field configurations minimizing the budget costs for a range of receiver thermal design powers (from 300 MWth to 1000 MWth). The second optimization, based on annual simulation, selects the storage tank volume, the steam turbine rated power, and the actual reflective area (number of mirrors) capable to cover 90% of the power demand at minimum cost. The analysis is carried out for two load profile and two locations in Egypt. The load profile, compared to the solar radiation availability, determines the relationship between tank capacity and turbine size. The level of radiation has the strongest impact on the oversizing of the solar field and levelized cost of electricity.

Publisher

EDP Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Renewable-Based Energy Mix Optimization for Weak Interconnected Communities;Springer Proceedings in Earth and Environmental Sciences;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3