Modeling and Analysis of a Micro Gas Turbine Fuelled with Hydrogen and Natural Gas Blends

Author:

Barati Shahrokh,De Santoli Livio,Basso Gianluigi Lo

Abstract

This study deals with implementing an analytical model to simulate the energy performance associated with a Micro Gas Turbine when H2NG (Hydrogen Enriched Natural Gas) blends are used as fuel. The experimental campaign validated the simulation results at the actual operating conditions of the Micro Gas Turbine. The experimental campaign for model validation has been carried out over the spring and summer periods. Additionally, the MGT performance has been detected when fuelled H2NG with hydrogen fraction ranges between 0% vol. to 10% vol., with a 2% vol. Step., according to the main findings, the fuel consumption is reduced significantly. Also, heat recovery and electrical reliability improve slightly even though environmental factors influence the system. A numerical model was developed with MATLAB-Simulink to model the operation of the MGT. Thus, the relative standard errors affecting the main output parameters have been determined.

Publisher

EDP Sciences

Reference23 articles.

1. European Commission 2018-2020 Climate and energy package.

2. Ministry of economic development and the Ministry of the environment and protection of the territory of the sea, National Energy Strategy (SEN) (10 November 2017).

3. European Commission 2030 Climate and energy framework available at: https://ec.europa.eu/clima/policies/strategies/2030_en

4. Wei L., Geng P., A review on natural gas/diesel dual fuel combustion emissions and performance Fuel Process Technol, 142 (2016), pp. 264–278.

5. Kreuter W., Hofmann H., The Important Energy transformers in a world of sustainable energy Int J Hydrogen Energy (1998), pp. 661–666.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3