Power to Methane technologies through renewable H2 and CO2 from biogas: The case of Sardinia

Author:

Concas Giulia,Lonis Francesco,Tola Vittorio,Cocco Daniele

Abstract

A Power-to-Methane system based on a Biological Hydrogen Methanation (BHM) process using the CO2 produced by a biogas upgrading process and the H2 produced by an alkaline electrolyser was analysed in this work. The electrolyser can be fed by the electrical energy produced by a dedicated PV plant or supplied by the electrical grid. The analysis of the energy production from the PV plant and the consumption of the electrolyser was carried out on an hourly basis considering different sizes for the PV plant and four different scenarios for the operating time of the electrolyser. Also, a preliminary economic analysis was carried out to estimate the levelized cost of biomethane (LCOBM) and the costs of biomethane transport with a dedicate pipeline and in form of LNG by trucks. Finally, the paper investigated the availability of biomass and biogas in Sardinia that can be converted into biomethane, and the contribution of BHM plants to supply the forecast demand of CH4. The availability of biogas in Sardinia, together with the production of biomethane through BHM systems, can supply up to 44% of the forecast demand of CH4.

Publisher

EDP Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3