Development of benchmark scenarios for sector coupling in the Italian national energy system for 100% RES supply to power and mobility

Author:

Colbertaldo Paolo,Guandalini Giulio,Campanari Stefano

Abstract

The urgence of decarbonization has pushed many countries to set ambitious net-zero CO2 emission targets by 2050. This requires a substantial transformation of energy sources, conversion methods, and final uses. This work investigates the structure of the future Italian energy system – in terms of power generation capacity, energy storage, mobility fuel shares – and assesses benchmark scenarios able to reach a fully decarbonized supply in power and transport sectors, considering their long-term evolution. The analysis adopts a multi-node multi-vector model that simulates the year-long energy system behaviour with hourly time resolution and optimizes sizing (installed capacities) and operation (energy flows). The model considers power generation from different sources, electric consumption, and mobility demand for energy vectors, focusing on electricity and hydrogen. The required installed capacities of RES power plants and energy storage systems appear to be extremely high (at least 10x today’s solar PV or more), but in general positively influenced by sector integration strategies and energy vector multiplicity. Energy storage and flexibility solutions are essential, combining battery storage, Power-to-Hydrogen, Power-to-Power, smart charging, and vehicle-to-grid. If capacity installation is limited (e.g., due to land availability), the need to satisfy consumption yields significant import requirements, which also depend upon the mobility mix and the decarbonization targets.

Publisher

EDP Sciences

Reference56 articles.

1. IEA (International Energy Agency), World Energy Outlook, 2020.

2. European Commission, Clean energy for all Europeans, 2019.

3. Ministero dell’Ambiente e della Tutela del Territorio e del Mare, Ministero dello Sviluppo Economico, Ministero delle Infrastrutture e dei Trasporti, Ministero delle Politiche agricole Alimentari e Forestali, Strategia italiana di lungo termine sulla riduzione delle emissioni dei gas a effetto serra, 2021.

4. Impact of hydrogen energy storage on California electric power system: Towards 100% renewable electricity

5. Colbertaldo P., Power-to-Hydrogen for long term power and transport sector integration, Politecnico di Milano, 2019.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Principles of creating a public transport network model for regions;The 12th International Conference ENVIRONMENTAL ENGINEERING 12th ICEE SELECTED PAPERS;2023-10-23

2. A comprehensive multi-node multi-vector multi-sector modelling framework to investigate integrated energy systems and assess decarbonisation needs;Energy Conversion and Management;2023-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3