On the wake effect in wind farm power forecasting: a new data-driven approach

Author:

Famoso Fabio,Brusca Sebastian,Galvagno Antonio,Messina Michele,Lanzafame Rosario

Abstract

Wind power generation differs from other energy sources, such as thermal, solar or hydro, due to the inherent stochastic nature of wind. For this reason wind power forecasting, especially for wind farms, is a complex task that cannot be accurately solved with traditional statistical methods or needs large computational systems if physical models are used. Recently, the so-called learning approaches are considered a good compromise among the previous methods since they are able to integrate physical phenomena such as wake effects without presenting heavy computational loads. The present work deals with an innovative method to forecast wind power generation in a wind farm with a combination of GISbased methods, neural network approach and a wake physical model. This innovative method was tested with a wind farm located in Sicily (Italy), used as a case study. It consists of 30 identical wind turbines (850 kW each one), located at different heights, for an overall Power peak of 25 MW. The time series dataset consists of one year with a sampling time of 10 minutes considering wind speeds and wind directions. The output of this innovative model leaded to good results, especially for medium-term overall energy production forecast for the case study.

Publisher

EDP Sciences

Reference15 articles.

1. “The World Wind Energy Report 2018”. World Wind Energy Agency (WWEA), (2019).

2. On the use of dynamic reliability for an accurate modelling of renewable power plants

3. Designing sustainable bioenergy from residual biomass: Site allocation criteria and energy/exergy performance indicators

4. Galvagno A., Prestipino M., Maisano S., Urbani F., Chiodo V.. “Integration into a citrus juice factory of air-steam gasification and CHP system: Energy sustainability assessment” in Energy Conversion and Management, 193, (2019).

5. Gasification and pyrolysis of different biomasses in lab scale system: A comparative study

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3