Detection of silent subsidence over extensive area by SBAS DInSAR: a case study of Southern Bali, Indonesia

Author:

Yastika Putu Edi,Shimizu Norikazu,Pujianiki Ni Nyoman,Temaja I Gede Rai Maya,Antara I Nyoman Gede,Osawa Takahiro

Abstract

Numerous cities around the world are facing the problem of land subsidence. In many cases, it is the excessive groundwater extraction to meet human needs that leads to this subsidence. Since land subsidence rates are very slow (a few centimeters per year), the subsidence usually remains unnoticed until it has progressed to the point of causing severe damage to buildings, houses, and/or other infrastructures. Therefore, it is very important to detect the presence of subsidence in advance. In this study, screening for the presence of land subsidence in the city of Denpasar, Bali, Indonesia is conducted. The Sentinel-1A/B SAR dataset, taken from October 2014 to June 2019, is processed using the SBAS DInSAR method. Subsidence is found in the districts of Denpasar Selatan, Denpasar Barat, and Kuta, which falls in the range of -100 mm to -200 mm in an area of about 93.03 ha. All the extracted points of interest show the subsidence having linear behavior. The spatio-temporal behavior of the subsidence in Denpasar is presented clearly. However, the mechanism and the deriving factors of the subsidence remain unclear. Therefore, further studies are needed.

Publisher

EDP Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Land Subsidence Observation in Bali Dense Population Area using L-Band SAR Images from 2007 to 2021;2023 8th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR);2023-10-23

2. Sentinel-1 Based Land Deformation Mapping in Bali Island Indonesia Using Persistent Scatterer Interferometry SAR;2023 8th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR);2023-10-23

3. Time-Series Ground Subsidence in Bali Before and During the Covid-19 Pandemic Monitored by PS-INSAR Method;IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium;2022-07-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3